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1 Preliminaries

The majority of materials appearing in nature and technologies is porous. These are
geological materials such as rocks or soils (e.g. clays or sands), biological tissues such as
bones, wood or soft tissues, many artificial materials such as ceramics, concrete, paper,
granular materials such as cereals or powders, and many other. They can be divided
into two large classes: nondiffusive and diffusive. Nondiffusive porous materials such as
composites or some foams do not allow for the transport of mass of any substance through
the solid matrix on a macroscopic level. Cavities (pores) of the matrix are closed. Diffusive
porous materials such as soils, rocks, filters etc. allow for the transport of mass (fluid or
gas) through the channels of the matrix. In continuum modeling procedures such porous
materials are called immiscible mixtures. They are the subject of this article.

Continuous modeling of composites, or, in particular, nondiffusive porous materials is
based on a classical kinematics of a one-component continuum and its main purpose is to
find by an appropriate homogenization procedure a relation between their microstructure
and the effective moduli that govern their macroscopic behavior. On the other hand, in
modeling of diffusive porous materials the main task is to find different kinematics of solid
and fluid components of such materials and material coupling between them caused by the
relative motion (diffusion). The most natural way to proceed is to describe the motion of
the solid matrix (skeleton) with respect to its chosen reference configuration (referential
or Lagrangian description) and to describe the motion of fluid components with respect to
a current configuration (spatial or Eulerian description). This yields a natural description
of geometrical nonlinearities such as large deformations of the skeleton. Before we present
this formalism let us point out certain flaws of models appearing in the literature under
the heading of a Lagrangian description of immiscible mixtures. In continuous models it is
the most essential issue to identify an infinitesimal neighborhood of a current position of
particles within which these particles interact. This has been recognized by C. Truesdell
in his theory of miscible mixtures which has been constructed in Eulerian description
(for extensive references on this subject see, for instance, [13], [14]). Due to diffusion
particles of different components, for instance particles of the skeleton and of the fluid
in the channels run apart and, after a finite time lapse do not participate in the mutual
interactions anymore. Hence, all constitutive relations of immiscible mixtures have to be
defined on instantaneous infinitesimal neighborhoods of points in current configurations.
From this point of view a consistent Lagrangian approach for all components is not possible
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in contrast to such claims in some works on porous materials. However, one can choose
one component, for instance the skeleton, for which this approach can be applied and
then make it consistent by mappings to the current configurations. In the nonlinear
continuum such consistency conditions are defined by the so-called pull-back and push-
forward mappings. We present them in the next Section. This Section contains as well
some remarks on thermodynamical restrictions of constitutive relations. In particular,
the notion of the thermodynamical equilibrium and the dissipation are defined. Some
results for nonlinear thermoporoelastic saturated materials are briefly presented. The next
Section contains a particular case of the thermoporoelastic saturated materials undergoing
small deformations. Some properties of two important material coefficients — thermal
conductivity and diffusion (permeability) coefficient — are discussed. The fourth Section
indicates some applications of the model of immiscible mixtures and exposes the need for
extensions.

In the presentation of this article we use the boldface notation for vectors and tensors.
Some relations are presented in Cartesian components as well in order to expose their
structure. References are reduced to an absolute minimum. Further details and historical
priorities can be found in those references.

2 Nonlinear thermoporomechanics

The kinematics of the components of a porous medium is specified by functions describing
the motion of the skeleton - the solid component and A fluid components. As mentioned
above, nonlinear models of such systems are based on the Lagrangian description of motion
of the skeleton. Let B0 ⊂ ℜ

3 (ℜ3 — three-dimensional Euclidean space of configurations)
denote a reference configuration of the skeleton at the instant of time, say, t = 0. Then
the continuously differentiable mapping fS, the function of motion of the skeleton,

x = fS (X, t) , X ∈B0, i.e. xk = fSk
(
XK , t

)
, x = xkek, X = XKeK, (1)

specifies the vector of the current position x of the material point X of the skeleton at
the instant of time t > 0; X = fS (X, 0) . {ek} and {eK} are the base vectors of Eulerian
and Lagrangian coordinates, respectively. For the purpose of this article it is sufficient to
assume that these are Cartesian coordinates. The above definition is identical with the
definition of the function of motion of a usual continuous medium (e.g. [11]). By means
of this function we can define the deformation gradient FS and the velocity x́S of the
skeleton

FS = Grad fS, x́S =
∂fS

∂t
, i.e. F SkK =

∂fSk

∂XK
, x́Sk =

∂fSk

∂t
. (2)

As usual, the deformation gradient specifies the (linear) transformation rule for material
vectors. Its squares define the right and left Cauchy-Green deformation measures

CS = FSTFS, cS = FSFST , i.e. CSKL = F SkK F
S
kL, cSkl = F

SK
k FSlK. (3)

We shall not go into any further details of the kinematics because they do not differ from
the classical description of a single-component continuum.

As already mentioned, the kinematics of the fluid components filling the channels of
the skeleton is described in a natural way by the Eulerian approach typical for fluids.
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This means that at each point occupied in the current configuration by a material point
of the α-component, α ∈ (1, ..., A), the velocity field vα should be given

vα = vα (x,t) , x ∈Bt =
{
x ∈ ℜ3

∣∣x = fS (X, t) ,X ∈B0
}
. (4)

These vector functions are defined on a set Bt which is the current configuration of the
skeleton at the instant of time t. This means that at each point of this set material points
of all components of the porous medium appear simultaneously. This property of the
continuum theory of mixtures was introduced by C. Truesdell in 1957. Obviously, it is a
necessary condition for the construction of a field theory describing such media. Other-
wise, unknown fields would not be defined on the same space of independent variables, such
notions as continuity or differentiability could not be introduced and the mathematical
model would not be consistent. This point of the theory of porous media, called also the
theory of immiscible mixtures, is very often misinterpreted in the literature, particularly
in publications on soil mechanics in which boundary value problems are not considered
and the flaws of the model with different sets of material points for each component are
not clearly visible.

In order to obtain a consistent mathematical model we have to transform independent
variables in the relation (4). Namely, we define the velocity fields for fluid components by
the following relation

x́α = vα
(
fS (X, t) , t

)
= x́α (X, t) , α ∈ (1, ..., A) , i.e. x́αk = x́αk

(
XK , t

)
. (5)

This is a part of the so-called pull-back operation which specifies velocity fields on the
reference configuration of the skeleton. Detailed descriptions of this operation and of the
inverse push-forward operation can be found in the book of J. Marsden and T. Hughes
[8].

Now we are in the position to define the set of unknown fields describing an immiscible
mixture with A fluid components. It is clear that the function of motion of the skeleton
and the velocity fields of the fluid components must enter this set. In addition, as in the
case of the Eulerian description of fluids, mass densities are basic unknowns. We denote
them by ρS, ρα, α ∈ (1, ..., A), where the first one is the partial mass density of the skeleton
and the remaining are partial mass densities of the fluid components. They specify the
mass of the corresponding component per unit volume of the reference configuration B0
at the instant of time t. The mass density of the skeleton would not enter this set, as it
is the case in the classical Lagrangian description of single-component continua, if a mass
exchange between components were absent. We return to this point in the sequel.

The above fields would be sufficient for the construction of a model of isothermal
processes in miscible mixtures (mixtures of fluids). For immiscible mixtures it is not the
case. The reason is the microstructure which makes mixtures immiscible. Complex geome-
tries of the channels in the solid matrix, solid fibers, voids of different shapes and size,
influence the mechanical properties of the skeleton (e.g. they yield anisotropy of bones).
Simultaneously, they yield complex flows of fluids in curvy channels, interactions of fluid
components with surfaces of channels (e.g. wetting properties) etc. A general continuous
model accounting for all these properties would be of a hopeless complexity. For this
reason, various special models are constructed in which only some of the microstructural
properties are incorporated. The most popular is an isotropic model of a porous mate-
rial fully saturated with a single fluid component. Then the additional microstructural
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variable is the porosity n, i.e. the fraction of the volume of the voids in the volume of
the microstructural domain called the Representative Elementary Volume (REV ). The
latter is considered to be large enough to allow the calculation of volume averages of
random microstructural properties and small enough to be considered to be a material
point of the continuum macroscopic model (compare [2]). We present further some other
microstructural variables.

For nonisothermal processes a notion of a temperature or many temperatures must
be introduced. This is still very much an open problem of thermodynamics of immiscible
mixtures. The assumption that the porous medium is described by a single temperature
means that the system is in local thermodynamical equilibrium. Many systems do not
fulfil this assumption. For the purpose of this Section we introduce the notion of partial
temperatures of the components. There are numerous unsolved problems related to such
a model — the physical interpretation of partial temperatures (they cannot be identified
by measurements on the so-called ideal walls), the formulation of boundary conditions for
multiple heat conduction equations, etc.

Bearing the above remarks in mind we can set the problem of continuous modeling of
thermoporoelastic materials as the formulation of field equations for the following quan-
tities

F =
{
fS, x́1, ..., x́A, ρS, ρ1, ..., ρA, n, θS, θ1, ..., θA

}
, (6)

which are functions of the points X ∈B0 and time t. θ
S, θ1, ..., θA are temperatures of

the components. For those 5(1 + A) + 1 fields field equations follow from local balance
equations. However, in many cases of practical importance additional fields and additional
field equations must be formulated. This is the case when there appears a mass exchange
between the components due to chemical reactions or phase transformations. Then some
evolution equations for the extent of such reactions must be formulated. This is also the
case when irreversible deformations such as plastic or viscoplastic deformations appear.
In those cases flow rules must be added. In this short article we shall not present such
relations.

Balance equations and partial conservation laws are formulated on material domains
of the components. Then time changes of such quantities as mass, momentum, energy,
etc. are given by surface fluxes, volume supplies and sources. Consequently, we have to
define first the material domains for all components of immiscible mixtures. In general,
for components S or α ∈ (1, .., A) these are subsets of the current configurations Bt in the
space of configuration ℜ3 whose boundaries move with the velocity x́S or x́α, respectively.
Projected by the function of motion fS−1 on the reference configuration B0 these yield
either subsets of B0 which do not change in time — for the skeleton, or subsets of B0
whose boundaries move with the so-called Lagrangian diffusion velocities X́α for the fluid
components. These velocities are defined by the relation

X́α = FS−1
(
x́α − x́S

)
, (7)

(compare [13], [14] for details). Then the balance laws have the following local form
1. mass balances

∂ρS

∂t
− ρ̂S = 0,

∂ρα

∂t
+Div ραX́α − ρ̂α = 0, ρ̂S +

A∑

α=1

ρ̂α = 0, (8)
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2. momentum balances

∂ρSx́S

∂t
−DivPS − p̂S − ρSbS = 0,

∂ραx́α

∂t
+Div ραx́α ⊗ X́α −DivPα − p̂α − ραbα = 0, (9)

p̂S +
A∑

α=1

p̂α = 0,

3. energy balances

∂

∂t

(
ρSεS +

1

2
ρSx́S · x́S

)
+Div

(
QS −PST x́S

)
−

−ρS
(
bS · x́S + rS

)
− ε̂S = 0,

∂

∂t

(
ραεα +

1

2
ραx́α · x́α

)
+Div

[(
ραεα +

1

2
ραx́α · x́α

)
X́α+ (10)

+Qα −PαT x́α
]
− ρα (bα · x́α + rα)− ε̂α = 0, ε̂S +

A∑

α=1

ε̂α = 0,

4. porosity balance
∂ (n− nE)

∂t
+Div J− n̂ = 0. (11)

We use the following notation: quantities with hats are the intensities of sources per
unit reference volume and time, PS,Pα are partial Piola-Kirchhoff stress tensors, bS,bα

are body forces which include noninertial contributions for arbitrary reference systems
in the configuration space, εS, εα are specific partial internal energies of the components,
QS,Qα are partial heat flux vectors per unit reference surface, rS, rα are partial radiation
intensities, nE is the equilibrium porosity and J is the porosity flux per unit reference
surface.

In addition, the quantity which serves the purpose of formulation of the second law of
thermodynamics — the entropy density — is assumed to be given in terms of the partial
entropy densities ηα which satisfy the balance law

∂ρSηS

∂t
+ DivHS + ρSsS + η̂S = 0,

∂ραηα

∂t
+DivHα + ραsα + η̂α = 0, (12)

whereHS,Hα denote the partial fluxes of entropy, sS, sα are the partial entropy radiations.
The partial source terms η̂S, η̂α are different from zero in thermodynamically irreversible
processes.

The theory of miscible mixtures is based on a principle of compatibility which requires
that the partial balance equations yield conservation laws of a single continuum with
appropriate definitions of bulk quantities. The same principle is imposed on the theory of
immiscible mixtures. It is satisfied provided the source terms fulfil the above conditions of
conservation of mass, momentum and energy. In addition, bulk mass density, momentum
density, energy density, the bulk stress tensor, the bulk heat flux vector and bulk volume
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supplies are defined as sums of partial quantities with corrections nonlinear in the diffusion
velocities. For instance,

ρ = ρS +
A∑

α=1

ρα, ρẋ = ρSx́S +
A∑

α=1

ραx́α, ρẊ :=
A∑

α=1

ραX́α,

ρε = ρSεS +
A∑

α=1

ραεα +
1

2

{

ρSCS·
(
Ẋ⊗Ẋ

)
+

A∑

α=1

ραCS·
(
X́α − Ẋ

)
⊗
(
X́α − Ẋ

)}

,

P = PS +
A∑

α=1

Pα − F S

{

ρSẊ⊗Ẋ+
A∑

α=1

ρα
(
X́α − Ẋ

)
⊗
(
X́α − Ẋ

)}

, (13)

Q = QS +
A∑

α=1

Qα −

−ρSεSẊ+
A∑

α=1

ραεα
(
X́α − Ẋ

)
+PSTFSẊ−

A∑

α=1

PαTFS
(
X́α − Ẋ

)
+

+
1

2

{

−ρSẊ⊗Ẋ⊗Ẋ+
A∑

α=1

ρα
(
X́α−Ẋ

)
⊗
(
X́α−Ẋ

)
⊗
(
X́α−Ẋ

)
CS

}

.

The underlined parts vanish in approximate theories in which diffusion velocities are small.
For example, in soils diffusion velocities are of the order of magnitude of 0.1 m/s (usually
much less than that). Then the contribution of the diffusion velocities to the stress tensor
are of the order of 20 − 30 Pa compared to, say, 100 kPa of the pressure of the water in
the pores. The bulk Piola-Kirchhoff stress tensor P and the bulk heat flux vector Q play
an important role in the formulation of boundary conditions for such a nonlinear theory.
We do not present these problems in this short exposition.

There are 5(1 + A) + 1 balance laws (9-11) and they can be transformed into field
equations for the fields (6) by an appropriate choice of constitutive relations for the
following quantities

C =
{
εA, εα, nE,P

S,Pα,QA,Qα,J, ρ̂α, p̂α, ε̂α, n̂
}
, α = 1, ..., A. (14)

This choice is dependent on the purpose of the model. For instance, for thermoporoelastic
materials without mass exchange between the components the set of appropriate variables
is as follows

V =
{
ρα,FS, n,Gradn, θS, θα,Grad θS,Grad θα, X́α

}
, (15)

and then it is assumed that the constitutive relations

C = C (V) , (16)

are continuously differentiable functions. As usual, they specify the class of materials
described by the model. It is an important feature of these relations that they contain a
dependence on the porosity gradient Gradn in addition to a dependence on the porosity
n itself. Such a property is characteristic for the so-called second gradient models. In
the present case, it yields the existence of couplings between components which is well

6



understood and physically justified within a linear model introduced by M. A. Biot and
which we briefly present further in this article.

Constitutive relations should satisfy a number of restrictions which we do not discuss
here in details. Among the most important conditions which should be fulfilled are

1. the principle of material objectivity, i.e. a requirement that constitutive
relations should be invariant with respect to the change of the observer in
the space of configurations: x∗ = O (t)x+ a (t), x, x∗ ∈ ℜ3, where O (t) is
an arbitrary time dependent orthogonal matrix and a (t) and arbitrary time
dependent vector. These are obviously the rigid time dependent rotation and
the displacement of the body as a whole. They yield explicit contributions
of noninertial forces to equations of motion but they should not influence
constitutive material properties,

2. the principle of material symmetry, i.e. a requirement that constitutive
relations should be invariant with respect to the transformation of reference
configurations X∗ = GX, X ∈B0, X

∗ ∈ {GX|X ∈B0}, whereG is an element
of a unimodular group defining the symmetry of the material. This require-
ment is usually imposed only on the properties of the skeleton while fluids
filling the pores are assumed to be isotropic,

3. the principle of thermodynamical admissibility which consists of the entropy

inequality: η̂ = ηS +
A∑

α=1

η̂α � 0, and some conditions imposed on local equi-

librium states appearing on singular surfaces modelling boundaries of media.

Technicalities yielding particular models satisfying these conditions are very complex
and we shall not present them here. It should only be mentioned that the third condi-
tion which is the second law of thermodynamics yields the specification of the so-called
dissipation function. It is semi-positive definite which reflects the second law of thermo-
dynamics and it vanishes in the state of thermodynamical equilibrium. This function is
at least quadratic with respect to the following variables

1. difference of the so-called partial chemical potentials which restricts the
form of the mass sources,

2. diffusion velocities X́α which restricts the form of momentum sources; it
yields a positive definiteness of the permeability tensors,

3. difference of partial temperatures θα−θβ which restricts the form of energy
sources and yields the evolution to local thermodynamical equilibria,

4. nonequilibrium changes of the porosity n−nE which restricts the evolution
of microcracks and damage.

A number of identities which follow from the third principle yield as well the so-
called Gibbs equation which, in turn, indicates the existence of various thermodynamical
potentials such as Helmholtz free energies, Gibbs free energies, chemical potentials, etc.
They simplify considerably the formulation of the constitutive relations.
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Interfaces, boundaries. Partial differential equations which follow from the above
construction of the model for the chosen fields (6) require the formulation of initial and
boundary conditions. In many cases of practical importance such as the propagation
of waves in thermoporoelastic materials the model is hyperbolic which means that the
Cauchy problem is well posed. It means that one can find local solutions solely by a
formulation of initial conditions. This is indeed a nice mathematical property but it
has almost no practical importance for engineering problems. In real media we have to
formulate conditions on boundaries of the medium. This is a quite complex problem for
immiscible mixtures and its solution is only known for some particular cases. Difficulties
appear already by the formulation of the notion of the boundary. In the case of porous
materials it is usually assumed that boundaries are identical with the boundary of the
domain B0 which is material with respect to the skeleton. It means that it does not
move in the reference configuration and its motion in the current configurations is given
by the velocity field of the skeleton x́S. However even for problems of porous materials
there may arise difficulties with the definition of interfaces which, for instance, determine
boundaries between saturated and unsaturated parts of the medium or fronts of freezing
in soils. In addition, conditions on such surfaces are indicated by the so-called dynamic
compatibility conditions only in cases of boundaries on which one can neglect the influence
of boundary layers. This may be the case for impermeable boundaries (i.e. boundaries
on which the relative velocities of all components are zero) but even then there may
appear important contributions which are not predicted by ideal dynamic compatibility
conditions. A typical example is the boundary condition for the transfer of energy through
an impermeable boundary in the case of radiation and convection along the boundary.
This is the typical problem for walls in civil engineering structures.

In order to appreciate the problem we demonstrate here some particular boundary
conditions for porous media. As already mentioned the basis for their construction follows
from dynamic compatibility conditions which result from general balance laws for singular
surfaces. Let us project a surface, moving through a porous medium on which singularities
appear, onto the reference configuration B0 by means of the function of motion of the
skeleton fS. This surface may not be material with respect to the skeleton (e.g. a wave
front) and, consequently it possesses a speed U with respect to particles of the skeleton
X ∈B0 and its unit normal is N. On such a surface the following conditions result from
global balance equations (e.g. see [13], [14])

U
[[
ρS
]]

= 0,
[[
ρα
(
X́α ·N−U

)]]
= 0, α ∈ (1, ..., A) ,

ρSU
[[
x́S
]]

+
[[
PS
]]
N = 0, ρα

(
X́α ·N−U

)
[[x́α]]− [[Pα]]N = 0,

ρSU

[[
εS +

1

2
x́S2
]]

+
[[
PST x́S −QS

]]
N = 0, (17)

ρα
(
X́α ·N−U

)[[
εα +

1

2
x́α2
]]
−
[[
PαT x́α −Qα

]]
N = 0,

U [[n− nE]]− [[J]] ·N = 0,

where [[...]] is the jump of the quantity on the surface. These relations are, respectively,
partial mass, momentum, energy and porosity balances for an ideal singular surface. The
surface is ideal because there are no contributions of surface terms which would appear if
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surface layers were replaced by surface densities. We return to this point later.
In addition to the relations (17) the integrability condition of the deformation gradient

yields the following kinematic condition

U
[[
FS
]]

+
[[
x́S
]]
⊗N = 0. (18)

Ideal conditions on a surface which is material with respect to the skeleton follow with
U ≡ 0 (hence

[[
x́S
]]

= 0), i.e.

[[
ραX́α

]]
·N = 0,

[[
PS
]]
N = 0, ραX́α ·N [[x́α]]− [[Pα]]N = 0,

[[
QS
]]
N = 0, ραX́α ·N

[[
εα +

1

2
x́α2
]]
−
[[
PαT x́α −Qα

]]
·N = 0,

[[J]] ·N = 0. (19)

Hence, even though continuity of the partial stress vector in the skeleton, PSN, and of
the partial heat flux in the skeleton normal to the surface, QS ·N, i.e. classical continuity
conditions follow in this case, the conditions for the remaining partial quantities are
far from being simple. For impermeable boundaries we have x́α = x́S, i.e. X́α = 0,
α ∈ (1, ..., A), and, consequently, partial stress vectors in the fluid components PαN as
well as the normal components of heat flux vectors Qα ·N are also continuous. This is
not any more the case on permeable boundaries.

The typical example is the permeable boundary between a saturated porous medium
and a viscous fluid in the exterior. The flow of this fluid along the boundary creates a
boundary layer within the porous material. The contact condition for shear stresses on
such a surface must account for the velocity distributions within surface layers on both
sides of the boundary. This yields the so-called Beavers-Joseph boundary condition (1967).
Another example is the flow in the direction perpendicular to such a surface. The relative
velocity which characterizes this flow is proportional to the pressure difference between the
channels in the porous material and the exterior. There appears an additional material
parameter α for such a condition which characterizes the surface properties, i.e. again
properties of boundary layers. For example, for a two-component linear porous material
this condition has the form

ρF0
(
vF − vS

)
· n ≡ ṁF = α

(
n0p

F
ext − p

F
)
, (20)

where ṁF is the flux of the fluid through the boundary per unit surface and unit time, pFext
is the fluid pressure in the exterior. The constant α reflects the properties of boundary
layers on both sides of the boundary. For α = 0 the boundary is impermeable and for
α → ∞ we obtain the condition of the continuity of pressure which follows from the
ideal dynamic compatibility conditions (no boundary layers!). This type of the boundary
condition is commonly used in investigations of flows through a rigid porous matrix. Such
boundary conditions play a particularly important role in the analysis of surface waves in
porous media — particularly, Rayleigh waves and Stoneley waves between saturated porous
media and a fluid (e.g. [6]). For those waves they were introduced by H. Deresiewicz
(1961).

Let us mention another example which contributes to the condition for the heat flux.
Even in the case of a contact problem between a fluid and a solid processes of convection
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along the boundary modify the classical Fourier continuity condition for the heat flux.
A material parameter — the Nusselt number — enters the condition for the heat transfer
coefficient. This is, of course, also the case for porous materials. We return later to this
example.

We skip further details of nonlinear thermoporoelastic models. In this article we
describe further only a linear version of such a model.

3 Linear thermoporoelastic models

In many problems of practical bearing such as thermomechanics of rocks, thermodiffusion
and condensation in structural walls, propagation of acoustic waves in porous materials,
the deformations of the skeleton and the fluid as well as the temperature differences are
small. Then it is sufficient to construct linear models of thermoporoelastic media. Hence
we can make the assumption

sup

(∥∥eS
∥∥ ,
∣∣∣∣
ρα − ρα0
ρα0

∣∣∣∣ ,
∣∣∣∣
θα − θα0
θα0

∣∣∣∣ , |n− n0|
)
<< 1, eS :=

1

2

(
1− cS−1

)
, (21)

where the subscript zero denotes an initial value of the corresponding quantity. Obviously,
eS = eSijei ⊗ ej is the Almansi-Hamel tensor of small deformations of the skeleton. Its

norm
∥∥eS

∥∥ is defined as the maximum of the absolute value of stretches (principal values
of eS). The difference of partial mass densities describes volume changes of corresponding
fluid components. Under this assumption there is no distinction between Lagrangian and
Eulerian description. Linearized balance equations in which nonlinear contributions of
the velocities (i.e. kinematic terms and products of sources with relative velocities) must
be neglected as well, have the form

∂ρS

∂t
+ ρS0 divv

S = ρ̂S,
∂ρα

∂t
+ ρα0 divv

α = ρ̂α, ρ̂S +
A∑

α=1

ρ̂α = 0,

ρS0
∂vS

∂t
− divTS = ρSbS + p̂S, ρα0

∂vα

∂t
− divTα = ραbα + p̂α, p̂S +

A∑

α=1

p̂α = 0,

ρS0
∂εS

∂t
+ divqS = tr

(
TS0 gradv

S
)
+ ρS0 r

S + ε̂S, (22)

ρα0
∂εα

∂t
+ div qα = tr (Tα0 gradv

α) + ρα0 r
α + ε̂α, ε̂S +

A∑

α=1

ε̂α = 0,

where the mass densities ρS, ρα, momentum densities ρS0v
S, ρα0v

α, internal energy densities
ρS0 ε

S, ρα0ε
α refer to the unit current volume of the mixture, TS,Tα are partial Cauchy

stress tensors, qS,qα are partial heat flux vectors referring to a unit current surface. The
differentiation is performed with respect to Eulerian coordinates xk, i.e. grad = ek

∂
∂xk
.

Under a frequently made assumption of the common temperature of all components
(local thermodynamical equilibrium of the mixture) energy sources vanish and the bulk
energy conservation law replaces the partial energy balance laws. It has the following
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form

ρ0
∂ε

∂t
+ div q =tr (T0 gradv) + ρ0r,

ρ0 = ρ
S
0 +

A∑

α=1

ρα0 , ρ0ε = ρ
S
0 ε
S +

A∑

α=1

ρα0 ε
α, ρ0r = ρ

S
0 r
S +

A∑

α=1

ρα0 r
α, (23)

q = qS +
A∑

α=1

qα, T0= T
S
0 +

A∑

α=1

Tα0 .

The porosity balance equation (11) reduces in the linear model to the form

∂ (n− nE)

∂t
+

A∑

α=1

Φα grad
(
vα − vS

)
− n̂ = 0. (24)

The matrices Φα, α ∈ (1, ..., A) are constant. In the isotropic case they reduce to A
constants.

The above set of equations supplemented by linear constitutive relations yields a model
of reactive transport in porous media [7]. We do not present here any details of such a
model. It requires a discussion of the problem of mass sources which are described by
evolution laws. These may result from chemical reactions, phase changes (e.g. evaporation
and condensation) or adsorption (e.g. Langmuir adsorption of impurities on walls of
channels). However it should be stressed that, in spite of a nonisothermal character of
such processes the question of thermal stresses, particularly in rocks, has been as yet fully
ignored.

Another simplification of the general model which has been very extensively investi-
gated in the literature is an isothermal model of partially saturated porous media without
mass sources. The fluid in channels consists in this case of two (or more) immiscible
components whose contribution to such a mixture is specified by the degree of saturation
which is related to the capillary pressure on interfaces between the fluid components. For
this model a coupling between the relative motion of the components and acoustic waves
was considered. Again thermal stresses were ignored. The simplest version of this model,
in which the degree of saturation is either one or zero, was proposed by M. A. Biot (see
the collection of Biot’s papers on porous materials published by I. Tolstoy [10]). The
constitutive equations of this model have the following form

TS = TS0 + λ
Se1+ 2µSeS +Qε1, pF = pF0 −Qe− ρ

F
0 κε,

p̂S = −p̂F = π
(
vF − vS

)
, n̂ = 0, (25)

nE = n0 (1 + δe) , e = tr eS =
ρS0 − ρ

S

ρS0
, ε =

ρF0 − ρ
F

ρF0
,

where λS, µS are effective (macroscopic) elasticity parameters of the skeleton, κ is the
effective compressibility parameter of the fluid, Q is the coupling constant, δ is the para-
meter describing changes of porosity due to volume changes of the skeleton and π is the
permeability coefficient. All these constants depend parametrically on the initial porosity
n0.

11



It is clear that Biot’s model describes only isothermal processes. However, within the
linear model an extension to cover processes with a varying temperature is straightforward
(e.g. see [3]). One has to correct the relations for partial stresses by a contribution of a
thermal expansion for each component

TStherm = −γST (θ − θ0)1, pFtherm = γFT (θ − θ0) , (26)

where the constants γST , γ
F
T are related to effective thermal linear expansion coefficients

αST , α
F
T by the relations

αST =
ρF0 κ

3

γST −Q/
(
ρF0 κ

)
γFT

KSρF0 κ−Q
2

, αFT =
KS

3

γFT −Q/K
SγST

KSρF0 κ−Q
2
, KS = λS +

2

3
µS, (27)

while the volume changes of the skeleton and of the fluid are given by the relations

e =
1

3KS

(
1 +

Q2

KSρF0 κ−Q
2

)
tr
(
TS −TS0

)
+

Q

KSρF0 κ−Q
2

(
pF − pF0

)
+ 3αST (θ − θ0) ,

ε = −
KS

KSρF0 κ−Q
2

(
pF − pF0

)
−

Q

3 (KSρF0 κ−Q
2)

tr
(
TS −TS0

)
+ 3αFT (θ − θ0) , (28)

which easily follow from (25) and (26). These relations play an important role by the iden-
tification of material constants for granular materials by means of the so-called Gassmann
relations (e.g. [14]), which describe their dependence on the initial porosity n0. Clearly,
in the particular case of lack of coupling between components described by the constant Q
(the so-called simple mixtures which follow from the second law of thermodynamics when
the dependence on the gradient of porosity is not accounted for) these relations have the
form analogous to relations of thermoelasticity

e =
tr
(
TS −TS0

)

KS
+ 3αST (θ − θ0) , ε = −

pF − pF0
ρF0 κ

+ 3αFT (θ − θ0) . (29)

In addition, one needs the energy balance equation (23) to describe temperature
changes. This extension requires constitutive relations for the internal energy and for
the heat flux vector q. The construction of the constitutive relation for the heat flux
vector and of the relation for the permeability coefficient π is not an easy task for porous
and granular materials. We present here some issues related to this problem.

The heat (thermal) conductivity of porous materials, in contrast to single com-
ponent continua should be constructed by a combination of heat conductivities of com-
ponents. The heat flux vector q for a two-component porous materials in the case of the
local thermodynamical equilibrium (a single temperature) can be written in the form

q = −kθ grad θ + kv
(
vF − vS

)
. (30)

Obviously, the first contribution is due to the conduction (Fourier) and the second one due
to convection (diffusion). The material parameters heat (thermal) conductivity tensor kθ
and the thermodiffusion tensor kv must follow from the properties of the components as
well as their interactions. For macroscopically isotropic materials these tensors reduce to
two material constants kθ = λθ1 and kv = λv1, where 1 is a unit tensor for Cartesian
coordinates.
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In many cases of classical fluid mixtures these coefficients can be calculated by means
of the kinetic theory.

For immiscible mixtures such a procedure is not available. There are some attempts to
derive an average thermal conductivity (e.g [5]) by means of the volume averaging which
amounts to the integration over the Representative Elementary Volume (REV ). For a
two-component porous medium this procedure yields the following relation

kθ =
(
nλFθ + (1− n)λSθ

)
1+

λFθ − λ
S
θ

vol (REV )

∫

A

n⊗ bFdA, (31)

where λFθ , λ
S
θ are the true thermal conductivities of the fluid and of the skeleton, respec-

tively, vol (REV ) is the volume of REV , A is the surface of contact between the skeleton
and the fluid within REV and bF is a material structural parameter proportional to the
normal vector n of the surface A for isotropic materials. Not much has been done to
determine this parameter. Some remarks on its determination can be found in the book
[5].

In practical applications such as freezing of soils where more than two components
appear (e.g. solid matrix, ice nuclei, water) in the system one uses empirical relations
verified in field experiments. For the thermal conductivity it is often assumed that it is
a geometrical mean of partial conductivities of the skeleton and of a fluid component in
the channels

λθ =
A+1∏

i=1

(λθi)
ni , (32)

where λθi are the thermal conductivities of the components and ni their volume contri-
butions. For instance, for the clay quoted in the Table below by the full saturation with
water and the porosity n0 = 0.25 we would obtain a value between 0.16 and 0.88 which
is far away from the results indicated in the last row of the Table.

Some modifications of this relation were introduced by Ø. Johansen in 1975 and the
nomograms (moisture content, or saturation vs.mass density vs. thermal conductivity;
moisture is the water content in the gas component in channels) constructed by means
of his relation are frequently used in geophysics. Another approach, called Wiener ad-
ditivity theory, proposes a relation with a free material parameter α which is equal to
zero for an arithmetic average, it is infinite for harmonic average and it is 0.5 for the
Maxwell additivity principle. However, a good theoretical model of the heat conductivity
for immiscible mixtures is still missing. On the other hand, experimental methods for
measuring this coefficient in granular materials, in particular in soils, have been recently
successfully developed. Such devices as a non-steady-state probe for thermal conductivity
measurement or a heat flux sensor enable studies of building envelope thermal resistance,
the effect of fire and flames or properties of soils near the point of freezing.

The second contribution to the heat flux (30) describes the flux of energy caused by the
diffusion. For many problems of civil engineering it may be neglected due to a very small
diffusion velocity in structural materials such as concrete or natural rocks. Typically,
the flux caused by the conduction in such structures (e.g.masonry) is of the order of
50 [W·m−2]. As the coefficient of thermodiffusion is of the order of the energy density
ρF εF , for water it would be approximately (in temperature 293 K) 250 [kg·m−3]·4.1813 ·
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10−3 [MJ·kg−1·K−1]·293 K = 306.28 · 106 [J·m−3] in materials of porosity n0 = 0.25.
Consequently, by the velocity of diffusion 10−7 [m·s−1] (this is, for instance, the velocity
of contaminant in the ground water appearing in nature) this contribution of convection
would be of the same order of magnitude as the contribution of conduction. For higher
velocities it would dominate in the energy flux. This may be very well the case for
civil engineering constructions with an essential amount of the moisture transport and it
is, certainly, the case, for instance, by the transpiration cooling devices (e.g. for cooling
leading edges and nose of rockets such as SpaceLiner or turbine blades with thin trailing
edges).

Table: Mass density ρ, heat (thermal) conductivity λθ and specific heat cv.

For comparison, under standard conditions

(temperature θ = 293.15 K, pressure p = 101.325 kPa):

water ρ = 998.2071 [kg·m−3], λθ = 0.6 [W·m−1·K−1], cv = 4.1813 [MJ·m−3·K−1];
air ρ = 1.204 [kg·m−3], λθ = 0.025 [W·m−1·K−1], cv = 0.00121 [MJ·m−3·K−1].

rock/soil
density

103[kg ·m−3]
heat conductivity
[W ·m−1 ·K−1]

specific heat
[MJ ·m−3 ·K−1]

basalt 2.6 - 3.2 1.3 - 2.3 2.3 - 2.6
granite 2.4 - 3.0 2.1 - 4.1 2.1 - 3.0
marble 2.5 - 2.8 1.3- 3.1 2.0
shale 2.7 1.5 - 2.6 2.2 -2.5

halite (rock salt) 2.1 - 2.2 5.3 - 6.4 1.2
sandstone 2.1 - 2.7 1.3 - 5.1 1.6 - 2.8
gravel (wet) 2.7 - 2.8 0.4 - 0.8 1.4 - 1.6

gravel (saturated) 2.7 1.8 2.4
sand (dry) 2.6 - 2.7 0.3 - 0.8 1.3 - 1.6

sand (saturated) 2.6 - 2.7 1.7 - 5.0 2.2 - 2.9
clay (dry) 0.1 - 1.0 1.5 - 1.6
clay (wet) 0.9 - 2.3 1.6 - 3.4

The permeability. The source of momentum p̂ in relation (25) was considered for
the first time by P. G. Darcy. He introduced a relation between the pressure gradient
and the diffusion velocity. In his formulation it was a linear relation q = k · (ϕ1 − ϕ2) /L
between the so-called hydraulic gradient (ϕ1 − ϕ2) /L and the volumetric discharge q, the
first proportional to the pressure difference and the second to the relative velocity. The
coefficient k is constant and called hydraulic conductivity. First with the development
of the theory of immiscible mixtures it has been shown that Darcy’s law is a particular
case of the partial momentum balance with a linear constitutive law for the momentum
source. The permeability coefficient π is then inversely proportional to the hydraulic
conductivity π = gρFk−1, where g is the gravity of the Earth. Those simple relations
have been subsequently developed in order to reveal a physical insight of the phenomenon
of resistance to the diffusion. The first proposition related the hydraulic conductivity
to the viscosity of the fluid in the channels. The constant k was written in the form
k = κgρFn−1µ−1, where µ is the dynamic viscosity. It is claimed that κ, the permeability,
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describes only the properties of a dry skeleton while the presence of the fluid in the
channels is accounted for by the viscosity. In the next step done by J. Kozeny (1929)
a dependence of permeability on the so-called tortuosity was introduced. The notion of
tortuosity is connected with the curvy character of streamlines in porous materials. In
a given direction it is a ratio of the length of the streamline between two near points
to the distance of these points. Consequently, the tortuosity is always greater than one.
Originally, Kozeny’s relation was linear with respect to the tortuosity. P. C. Carman
has shown in 1937 that it must be quadratic. Further, the relation of tortuosity to the
geometry of the microstructure of porous media was investigated by J. Bear. It has been
found that this quantity is a tensor of the second grade which reduces to a single scalar for
isotropic media. Consequently, the relation for the momentum source (25) was generalized
to the form p̂S = πij

(
vFj − v

S
j

)
ei.

Within the frame of a linear thermoporoelasticity the momentum source contribution
can be also linearly dependent on the temperature gradient. This type of relations are
considered for mixtures of fluids in which Onsager relations are used for the nonequilibrium
contributions of the relative velocity (diffusion) and the temperature gradient (thermal
convection). Such considerations are still missing in the theory of porous media.

4 Two challenges

We demonstrate on two examples problems arising in the stress and flow analysis in
thermomechanics of porous materials. These two problems have only partial solutions.

Let us begin with the transpiration cooling. In principle, in technologies one can
distinguish three types of cooling: by a film, by a convection and by a transpiration.
The latter appears, of course, in many natural biological processes as well but it became
recently also an efficient method of cooling in some extreme technological conditions. In
this process a coolant is coming from a reservoir through porous walls in the direction of a
hot gas side. In passing the porous medium the coolant absorbs the energy transferred in
the wall by conduction. In applications this process reaches after a certain time a steady
state. The coolant forms a film on the hot gas side which absorbs the convective heat
energy transfer and, consequently, reduces the heat transferred to the wall. The coolant
on the surface moves downstream by the momentum of the hot gas flow. This method of
cooling is used, for instance, for turbine blades which may operate in much higher turbine
inlet temperatures. One of the spectacular applications is cooling of leading edges of
hypersonic vehicles. For instance, in the project SpaceLiner a vehicle is designed to follow
the skip trajectories at an altitude of some 75 [km] and with the velocity of 6550 [m/s].
This is the same speed regime as the Space Shuttle but it will fly at lower altitudes.
Consequently, it develops higher temperatures which may reach at least 2900 [K] and
2400 [K] on the leading edges and the nose, respectively. These high temperatures are
supposed to be reduced by the application of a porous material (Porcelit 170: 91%, Al2O3
and 9% SiO2) which carries liquid water due to capillary forces created by the evaporation
on the hot side. This seems to be a feasible solution for the SpaceLiner as the total mass
of the orbiter and booster is 235000 [kg] in comparison to 860000 [kg] propellant and app.
9000 [kg] water needed for the cooling.

Various theoretical and experimental problems arise in relation to the design of such
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cooling devices. Among theoretical problems one should mention:

1. construction of a model of heat conduction and mechanical behavior (e.g.
thermal stresses) of the porous material in the transpiration zone,

2. construction of boundary conditions for a two-component system with
different temperatures of the components and open boundaries,

3. solutions (numerical) of various boundary value problems, usually steady
state, for various geometries and external conditions for various materials as
well as the optimization of the structure.

Modeling is as yet very crude and based on two ordinary differential equations for the
one-dimensional steady state partial energy balance for two temperatures: θF of the fluid
and θS of the solid porous matrix (e.g. [9]). They have the form

dθf
dη

=
h′L

ṁF cp
(θs − θf) ,

dθs
dη

=
ṁFL

ks
θf , (33)

where

θf =
θF − θFi
θSw − θ

F
i

, θs =
θS − θFi
θSw − θ

F
i

, η =
x

L
, ṁF = ρF

(
vFx − v

S
x

)
, (34)

and θFi is the temperature of the reservoir, θ
S
w the (constant) temperature of the matrix

at the exit, L the length of the one-dimensional system, ṁF denotes a constant mass
rate flow. h′ is the so-called heat transfer coefficient for the internal convection, cp is the
specific heat of the fluid and ks is the effective conductivity of the matrix. Before we
discuss solutions of this set of equations let us try to fit them into the scheme of the two-
component model presented before in this article. Making the identifications ρF X́F ·ex =
ṁF where ex is a unit vector pointing in the direction of x-axis, and Q

S = −ksGrad θS,
ε̂S = −ε̂F = h′

(
θF − θS

)
we obtain (33)1 as a rough approximation of (10)2 and (33)2

as a rough approximation of (10)1. Clearly, the fluid must be ideal T
F = −pF1 then the

differentiation of the partial enthalpy of the fluid hF = εF+pF/ρF (the partial pressure pF

chosen as a constitutive variable instead of the partial mass density ρF ) yields the specific
heat cp. Simultaneously, an influence of partial stresses in the skeleton must be entirely
neglected. However, the main point in this identification concerns the interpretation of
partial temperatures θS, θF . These are clearly macroscopic smeared out quantities as they
enter smeared out energy balance equations (10). On the other hand, both in the boundary
conditions as well as in their physical interpretation these temperatures are considered as
they were true temperatures of the components. Such quantities as mass, momentum and
energy which are all extensive can be averaged over, say, the representative elementary
volume (REV ) by volume integration. Temperatures are not extensive quantities and,
consequently, their averaging is much more complex and yields additional contributions
which we may call spatial fluctuations (compare some remarks by M. Kaviany [5]).

In addition, we cannot expect that both temperatures are simultaneously measurable
and controllable on boundaries. This means that the values of partial temperatures cannot
be assumed to be given on a boundary in contrast to the assumption in the work [9]. This
problem has been recently approached by J. H. Wang and his coworkers [12]. They have
tested five different arbitrarily chosen boundary conditions and by means of a numerical
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analysis selected these which, as they claim, fit best the expectations. There is no physical
argument supporting this choice. This problem of thermodynamics of multicomponent
systems seems to be still open.

It is also clear that the above described model neglects entirely couplings with defor-
mations, thermal stresses and latent heat of phase transformations. The latter problem
is connected with an essential energy consumption during evaporation.

The second example which contains essential points of modeling of thermoporous ma-
terials is the problem of freezing and thawing. This process yields the frost heaving of
pavements, the deterioration of concrete from freeze-thaw action, the creation of palsas
in regions of discontinuous permafrost, of the great interest by freezing is the durabil-
ity of water infiltrated materials or the determination of the cooling rates for the food
preservation or cryopreservation of organs for transplantation. O. Coussy in his work [4]
has listed the main mechanisms appearing in such processes. This work contains also
numerous references to particular subjects involved.

The material undergoing cooling below the freezing point is subject to at least six
actions:

1. increment of the pore pressure due to the difference of densities (specific
volumes) of the liquid water and ice crystals,

2. interfacial effects, surface tension between water and bubbles as well as
wetting on surfaces of the solid matrix and ice crystals which govern the crys-
tallization process,

3. drainage of the liquid water,

4. cryo-suction process which drives liquid water to air bubbles,

5. thermomechanical coupling between solid matrix, ice lenses and the liquid
water with air bubbles,

6. changes of porosity and permeability due to creation of microcracks (dam-
age) by formation of ice crystals.

The confined water can partially remain liquid in temperatures below the bulk freezing
point. This is caused by a depressurizing effect in water near ice crystals and yields the
cryo-pumping from warm inner layers to frozen fringe layers. As a consequence the frost
heave effect and palsas appear. Hence, the frost heave requires a macroscopic temperature
gradient.

The work of Coussy [4] contains a construction of a linear thermoporoelastic model
which accounts for the first five actions listed above. For the fields of deformation of the
skeleton eS, partial pressures in the ice crystals pC and in the water pW , energy of interfaces
between water and ice crystals U and temperature T field equations are constructed on
the basis of linearized partial balance equations. For instance, the constitutive relation
for partial stresses in the skeleton as one of the closing relations which replaces relations
(25), (26) is as follows

TS = TS0 + λ
Se1+ 2µSeS+

+

[
bC
(
pC −

2

3
U

)
+bW

(
pW −

2

3
U

)
− γST (θ − θ0)

]
1, (35)
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where the constants bC , bW correspond to the splitting of the Biot coupling constant
Q between ice crystals and water and the subsequent change of variables from partial
volume changes to partial pressures. The full change of porosity n−nE is assumed in this
model to consist of the contribution due to volume changes of the skeleton, ice crystals
and water as well a contribution of the degree of saturation SL. This in turn satisfies
a state relation in which the difference of partial pressures pc = pC − pL, the so-called
capillary pressure, appears (liquid saturation curve). In this relation hysteresis effects,
appearing in reality, are neglected. The system of equations is closed by a generalization
of Darcy’s law. The work does not contain any considerations concerning the distribution
of temperature and, consequently, an influence of thermal stresses. Completely ignored
is the question of damage through microcracking during freezing. This problem appears
in the literature under the heading of the Gurson-Tvergaard-Needleman yield criterion
formulated for metals in which microcracking contributes to the brittle damage. The yield
function of this model has the following form

fGTN =
σ2eq
σ2s

+ 2q1n cosh

(
1

2
q2
T Skk
σs

)
− 1− (q1n)

2 , (36)

where

σeq =

√
3

2
T Sdevij T Sdevij , TSdevij = T Sij −

1

3
T Skkδij, (37)

and σs is the yield stress which may consist of two parts: yield stress at the beginning of
the damage and the hardening. q1, q2 are the material parameters a little bigger than one.
Clearly, the first term describes the yield function for the classical von Mises criterion.
The most essential part of the above law is the changing porosity which reflects a density
of microcracks. This must be described by an evolution law which enters the right hand
side of the porosity balance equation [1].

The above remarks indicate that the model of freezing-thawing processes in porous
media is still in the very early stage of development. However, in contrast to the first
problem indicated above all ingredients of the model are already known and they require
only a systematic exposition.

5 Concluding remarks

Modeling of thermoporoelastic materials is still a very much open subject of research.
This concerns the thermodynamical foundations of various specific models as well as the
formulation of boundary conditions and solutions of boundary value problems. Since
some fifty years it was the main concern to investigate the propagation of acoustic waves
in such materials under isothermal conditions with very little attention paid to such
problems as distribution of stresses and deformations, damage problems or distribution
of temperatures.

We briefly recall the questions which are still very much open for the further research

- thermodynamical foundations of a model of immiscible mixtures with multi-
ple temperatures; in particular — formulation of boundary conditions for such
a model,
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- extension of a linear thermoporoelastic model on at least nonlinearities fol-
lowing from the dependence of the material parameters on the changing poros-
ity and the temperature; such dependencies are at the present accounted for by
iteration procedures, i.e. processes with small deviations from an initial state,

- construction of effective macroscopic parameters, particularly describing
fluxes of momentum and energy: in particular: construction of heat con-
ductivities, coupling thermal parameters with diffusion, permeabilities,

- construction of evolution laws for mass production by such phase transfor-
mations as freezing and evaporation,

- construction of a liquid saturation curve with hysteresis.

- analysis of thermal stresses in processes at high temperatures (e.g. in porous
shields for transpiration cooling).

It is clear from the examples mentioned above that the research in all these directions
is highly desired.
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